
Parse Forest Diagnostics with Dr. Ambiguity

H. J. S. Basten and J. J. Vinju

Centrum Wiskunde & Informatica (CWI)
Science Park 123, 1098 XG Amsterdam, The Netherlands

{Jurgen.Vinju,Bas.Basten}@cwi.nl

Abstract In this paper we propose and evaluate a method for locating causes
of ambiguity in context-free grammars by automatic analysis of parse forests. A
parse forest is the set of parse trees of an ambiguous sentence. Deducing causes of
ambiguity from observing parse forests is hard for grammar engineers because of
(a) the size of the parse forests, (b) the complex shape of parse forests, and (c) the
diversity of causes of ambiguity.
We first analyze the diversity of ambiguities in grammars for programming lan-
guages and the diversity of solutions to these ambiguities. Then we introduce
DR. AMBIGUITY: a parse forest diagnostics tools that explains the causes of
ambiguity by analyzing differences between parse trees and proposes solutions.
We demonstrate its effectiveness using a small experiment with a grammar for
Java 5.

1 Introduction

This work is motivated by the use of parsers generated from general context-free gram-
mars (CFGs). General parsing algorithms such as GLR and derivates [35,9,3,6,17],
GLL [34,22], and Earley [16,32] support parser generation for highly non-deterministic
context-free grammars. The advantages of constructing parsers using such technology
are that grammars may be modular and that real programming languages (often requiring
parser non-determinism) can be dealt with efficiently1. It is common to use general pars-
ing algorithms in (legacy) language reverse engineering, where a language is given but
parsers have to be reconstructed [25], and in language extension, where a base language
is given which needs to be extended with unforeseen syntactical constructs [10].

The major disadvantage of general parsing is that multiple parse trees may be
produced by a parser. In this case, the grammar was not only non-deterministic, but also
ambiguous. We say that a grammar is ambiguous if it generates more than one parse tree
for a particular input sentence. Static detection of ambiguity in CFGs is undecidable in
general [13,18,15].

It is not an overstatement to say that ambiguity is the Achilles’ heel of CFG-general
parsing. Most grammar engineers who are building a parser for a programming language
intend it to produce a single tree for each input program. They use a general parsing
algorithm to efficiently overcome problematic non-determinism, while ambiguity is an
unintentional and unpredictable side-effect. Other parsing technologies, for example

1 Linear behavior is usually approached and most algorithms can obtain cubic time worst time
complexity [33]

Ambihuous

Ambiguous
subsentence

Choice node

Unambiguous context

Figure 1. The complexity of a parse forest for a trivial Java class with one method; the
indicated subtree is an ambiguous if-with-dangling-else issue (180 nodes, 195 edges).�

�

�

�

If (<

ExprName (Id ("a")), <

IfElse (IfElse (

> ExprName (Id ("a")),

> If (

ExprName (Id ("b")), ExprName (Id ("b")),

ExprStm (ExprStm (

Invoke (Invoke (

Method (MethodName (Id ("a"))), Method (MethodName (Id ("a"))),

[[

])), |]))),

ExprStm (ExprStm (

Invoke (Invoke (

Method (MethodName (Id ("b"))), Method (MethodName (Id ("b"))),

[[

])))) |])))

Figure 2. Using diff -side-by-side to diagnose a trivial ambiguous syntax tree for a
dangling else in Java (excerpts of Figure 1).

Ford’s PEG [19] and Parr’s LL(*) [28], do not report ambiguity. Nevertheless, these tech-
nologies also employ disambiguation techniques (ordered choice, dynamic lookahead).
In combination with a debug-mode that does produce all derivations, the results in this
paper should be beneficial for these parsing techniques as well. It should help the user to
intentionally select a disambiguation method. In any case, the point of departure for the
current paper is any parsing algorithm that will produce all possible parse trees for an
input sentence.

In other papers [4,5] we present a fast ambiguity detection approach that combines
approximative and exhaustive techniques. The output of this method are the ambiguous
sentences found in the language of a tested grammar. Nevertheless, this is only a obser-
vation that the patient is ill, and now we need a cure. We therefore will diagnose the
sets of parse trees produced for specific ambiguous sentences. The following is a typical
grammar engineering scenario:

1. While testing or using a generated parser, or after having run a static ambiguity
detection tool, we discover that one particular sentence leads to a set of multiple
parse trees. This set is encoded as a single parse forest with choice nodes where
sub-sentences have alternative sub-trees.

2. The parser reports the location in the input sentence of each choice node. Note that
such choice nodes may be nested. Each choice node might be caused by a different
ambiguity in the CFG.

3. The grammar engineer extracts an arbitrary ambiguous sub-sentence and runs the
parser again using the respective sub-parser, producing a set of smaller trees.

4. Each parse tree of this set is visualized on a 2D plane and the grammar engineer
spots the differences, or a (tree) diff algorithm is run by the grammar engineer
to spot the differences. Between two alternative trees, either the shape of the tree
is totally different (rules have moved up/down, left/right), or completely different
rules have been used, or both. As a result the output of diff algorithms and 2D
visualizations typically require some effort to understand. Figure 1 illustrates the
complexity of an ambiguous parse forest for a 5 line Java program that has a
dangling else ambiguity. Figure 2 depicts the output of diff on a strongly simplified
representation (abstract syntax tree) of the two alternative parse trees for the same
nested conditional. Realistic parse trees are not only too complex to display here,
but are often too big to visualize on screen as well. The common solution is to prune
the input sentence step-by-step to eventually reach a very minimal example that still
triggers the ambiguity but is small enough to inspect.

5. The grammar engineer hopefully knows that for some patterns of differences there
are typical solutions. A solution is picked, and the parser is regenerated.

6. The smaller sentence is parsed again to test if only one tree (and which tree) is
produced.

7. The original sentence is parsed again to see if all ambiguity has been removed or
perhaps more diagnostics are needed for another ambiguous sub-sentence. Typically,
in programs one cause of ambiguity would lead to several instances distributed over
the source file. One disambiguation may therefore fix more “ambiguities” in a source
file.

The issues we address in this paper are that the above scenario is (a) an expert job, (b)
time consuming and (c) tedious. We investigate the invention of an expert system that
can automate finding a concise grammar-level explanation for any choice node in a parse
forest and propose a set of solutions that will eliminate it. This expert system is shaped
as a set of algorithms that analyze sets of alternative parse trees, simulating what an
expert would do when confronted with an ambiguity.

The contributions of this paper are an overview of common causes of ambiguity in
grammars for programming language (Section 3), an automated tool (DR. AMBIGUITY)
that diagnoses parse forests to propose one or more appropriate disambiguation tech-
niques (Section 4) and an initial evaluation of its effectiveness (Section 5). In 2006 we
published a manual [36] to help users disambiguate SDF2 grammars. This well-read
manual contains recipes for solving ambiguity in grammars for programming languages.
DR. AMBIGUITY automates all tasks that users perform when applying the recipes from
this manual, except for finally adding the preferred disambiguation declaration.

We need the following definitions. A context-free grammar G is defined as a 4-tuple
(T,N, P, S), namely finite sets of terminal symbols T and non-terminal symbols N ,
production rules P in A × (T ∪ N)∗ written like A → α, and a start symbol S. A
sentential form is a finite string in (T ∪ N)∗. A sentence is a sentential form without
non-terminal symbols. An ε denotes the empty string. We use the other lowercase greek
characters α, β, γ, . . . for variables over sentential forms, uppercase roman characters for
non-terminals (A,B, . . .) and lowercase roman characters and numerical operators for
terminals (a, b,+,−, ∗, /). By applying production rules as substitutions we can generate
new sentential forms. One substitution is called a derivation step, e.g. αAβ ⇒ αγβ with
rule A→ γ. We use⇒∗ to denote sequences of derivation steps. A full derivation is a
sequence of production rule applications that starts with a start symbol and ends with a
sentence. The language of a grammar is the set of all sentences derivable from S. In a
bracketed derivation [20] we record each application of a rule by a pair of brackets, for
example S ⇒ (αEβ)⇒ (α(E+E)β)⇒ (α((E ∗E)+E)β). Brackets are (implicitly)
indexed with their corresponding rule.

A non-deterministic derivation sequence is a derivation sequence in which a �
operator records choices between different derivation sequences. I.e. α ⇒ (β) � (γ)
means that either β or γ may be derived from α using a single derivation step. Note
that β does not necessarily need to be different from γ. An example non-deterministic
derivation is E ⇒ (E + E) � (E ∗ E) ⇒ (E + (E ∗ E)) � ((E + E) ∗ E). A cyclic
derivation sequence is any sequence α⇒+ α, which is only possible by applying rules
that do not have to eventually generate terminal symbols, such as A→ A and A→ ε.

A parse tree is an (ordered) finite tree representation of a bracketed full derivation
of a specific sentence. Each pair of brackets is represented by an internal node labeled
with the rule that was applied. Each terminal is a leaf node. This implies the leafs of a
parse tree form a sentence. Note that a single parse tree may represent several equivalent
derivation sequences. Namely in sentential forms with several non-terminals one may
always choose which non-terminal to expand first. From here on we assume a canonical
left-most form for such equivalent derivation sequences, in which expansion always
occurs at the left-most non-terminal in a sentential form.

A parse forest is a set of parse trees possibly extended with ambiguity nodes for each
use of choice (�). Like parse trees, parse forests are limited to represent full derivations
of a single sentence, each child of an ambiguity node is a derivation for the same sub-
sentence. One such child is called an alternative. For simplicity’s sake, and without loss
of generality, we assume that all ambiguity nodes have exactly two alternatives.

A parse forest is ambiguous if it contains at least one ambiguity node. A sentence is
ambiguous if its parse forest is ambiguous. A grammar is ambiguous if it can generate
at least one ambiguous sentence. An ambiguity in a sentence is an ambiguity node.
An ambiguity of a grammar is the cause of such aforementioned ambiguity. We define
cause of ambiguity precisely in Section 3. Note that cyclic derivation sequences can be
represented by parse forests by allowing them to be graphs instead of just trees [29].

A recognizer for G is a terminating function that takes any sentence α as input and
returns true if and only if S ⇒∗ α. A parser for G is a terminating function that takes
any finite sentence α as input and returns an error if the corresponding recognizer would
not return true, and otherwise returns a parse forest for α. A disambiguation filter is

a function that takes a parse forest for α and returns a smaller parse forest for α [24].
A disambiguator is a function that takes a parser and returns a parser that produces
smaller parse forests. Disambiguators may be implemented as parser actions, or by parser
generators that take additional disambiguation constructs as input [9]. We use the term
disambiguation for both disambiguation filters and disambiguators.

2 Solutions to Ambiguity

There are basically two kinds of solutions to removing ambiguity from grammars.
The first involves restructuring the grammar to accept the same set of sentences but
using different rules. The second leaves the grammar as-is, but adds disambiguations
(see above). Although grammar restructuring is a valid solution direction, we restrict
ourselves to disambiguations described below. The benefit of disambiguation as opposed
to grammar restructuring is that the shape of the rules, and thus the shape of the parse
trees remains unchanged. This allows language engineers to maintain the intended
semantic structure of the language, keeping parse trees directly related to abstract syntax
trees (or even synonymous) [21].

Any solution may be language preserving, or not. We may change a grammar to
have it generate a different language, or we may change it to generate the same language
differently. Similarly, a disambiguation may remove sentences from a language, or
simply remove some ambiguous derivation without removing a sentence. This depends
on whether or not the filter is applied always in the context of an ambiguous sentence,
i.e. whether another tree is guaranteed to be left over after a certain tree is filtered. It
may be hard for a language engineer who adds a disambiguation to understand whether
it is actually language preserving. Whether or not it is good to be language preserving
depends entirely on ad-hoc requirements. The current paper does not answer this question.
Where possible, we do indicate whether adding a certain disambiguation is expected to
be language preserving. Proving this property is out-of-scope.

Solving ambiguity is sometimes confused with making parsers deterministic. From
the perspective of the current paper, non-determinism is a non-issue. We focus solely on
solutions to ambiguity.

We now quote a number of disambiguation methods here. Conceptually, the following
list contains nothing but disambiguation methods that are commonly supported by lexer
and parser generators [1]. Still, the precise semantics of each method we present here may
be specific to the parser frameworks of SDF2 [21,37] and RASCAL [23]. In particular,
some of these methods are specific to scannerless parsing, where a context-free grammar
specifies the language down to the character level [37,30]. We recommend [7], to
appreciate the intricate differences between semantics of operator priority mechanisms
between parser generators.

Priority disallows certain direct edges between pairs of rules in parse trees in order to
affect operator priority. For instance, the production for the + operator may not be a
direct child of the * production [9].
Formally, let a priority relation > be a partial order between recursive rules of
an expression grammar. If A → α1Aα2 > A → β1Aβ2 then all derivations
γAδ ⇒ γ(α1Aα2)δ ⇒ γ(α1(β1Aβ2)α2) are illegal.

Associativity is similar to priority, but father and child are the same rule. It can be
used to affect operator associativity. For instance, the production of the + operator
may not be a direct right child of itself because + is left associative [9]. Left and
right associativity are duals, and non-assocativity means no nesting is allowed at
all. Formally, if a recursive rule A → AαA is defined left associative, then any
derivation γAδ ⇒ γ(AαA)δ ⇒ γ(Aα(AαA))δ is illegal.

Offside disallows certain derivations using the would-be indentation level of an (in-
direct) child. If the child is “left” of a certain parent, the derivation is filtered [26].
One example formalization is to let Π(x) compute the start column of the sub-
sentence generated by a sentential form x and let > define a partial order be-
tween production rules. Then, if A → α1Xα2 > B → β then all derivations
γAδ ⇒ γ(α1Xα2)δ ⇒∗ γ(α1(. . . (β) . . .)α2)δ) are illegal if Π(β) < Π(α1).
Parsers may employ subtly different offside disambiguators, depending on how Π is
defined for each different language or even for each different production rule within
a language.

Preference removes a derivation, but only if another one of higher preference is present.
Again, we take a partial ordering> that defines preference between rules for the same
non-terminal. LetA→ α > A→ β, then from all derivations γAδ ⇒ γ((α)�(β))δ
we must remove (β) to obtain A⇒ γ(α)δ.

Reserve disallows a fixed set of terminals from a certain (non-)terminal, commonly
used to reserve keywords from identifiers. Let K be a set of sentences and let I be a
non-terminal from which they are declared to be reserved. Then, for every α ∈ K,
any derivation I ⇒∗ α is illegal.

Reject disallows the language of a certain non-terminal from that of another one.
This may be used to implement Reserve, but it is more powerful than that [9]. Let
(I - R) declare that the non-terminal R is rejected from the non-terminal I . Then
any derivation sequence I ⇒∗ α is illegal if and only if R⇒∗ α.

Not Follow/Precede declarations disallow derivation steps if the generated sub-sentence
in its context is immediately followed/preceded by a certain terminal. This is used
to affect longest match behavior for regular languages, but also to solve “dan-
gling else” by not allowing the short version of if, when it would be immediately
followed by else [9]. Formally, we define follow declaration as follows. Given
A ⇒∗ α and a declaration A not-follow β, where β is a sentence, any derivation
S ⇒∗ γAβδ ⇒∗ γ(α)βδ is illegal. We should mention that Follow declarations
may simulate the effect of “shift before reduce” heuristics that deterministic — LR,
LALR — parsers use when confronted with a shift/reduce conflict.

Dynamic Reserve disallows a dynamic set of sub-sentences from a certain non-
terminal, i.e. using a symbol table [1]. The semantics is similar to Reject, where
the set R is dynamically changed as certain derivations (i.e. type declarations) are
applied.

Types removes certain type-incorrect sub-trees using a type-checker, leaving correctly
typed trees as-is [12]. Let C(d) be true if and only if derivation d (represented by
a tree) is a type-correct part of a program. Then all derivations γAδ ⇒ γ(α)δ are
illegal if C(α) is false.

Heuristics There are many kinds of heuristic disambiguation that we bundle under a
single definition here. The preference of “Islands” over “Water” in island grammars

is an example [27]. Preference filters are sometimes generalized by counting the
number of preferred rules as well [9]. Counting rules is used sometimes to choose
a “simplest” derivation, i.e. the most shallow trees are selected over deeper ones.
Formally, Let C(d) be any function that maps a derivation (parse tree) to an integer.
If C(A ⇒ α) > C(A ⇒ β) then from all derivations A ⇒∗ (α) � (β) we must
remove (β) to obtain A⇒ (α).

Not surprisingly, each kind of disambiguation characterizes certain properties of
derivations. In the following section we link such properties to causes of ambiguity.
Apart from Types and Heuristics (which are too general to automatically report specific
suggestions for), we can then link the causes explicitly back to the solution types.

3 Causes of Ambiguity

Ambiguity is caused by the fact that the grammar can derive the same sentence in at least
two ways. This is not a particularly interesting cause, since it characterizes all ambiguity
in general. We are interested in explaining to a grammar engineer what is wrong for a
very particular grammar and sentence and how to possibly solve this particular issue. We
are interested in the root causes of specific occurrences of choice nodes in parse forests.

For example, let us consider a particular grammar for the C programming language
for which the sub-sentence “{S * b;}” is ambiguous. In one derivation it is a block of
a single statement that multiplies variables S and b, in another it is a block of a single
declaration of a pointer variable b to something of type S. From a language engineer’s
perspective, the causes of this ambiguous sentence are that:

– “*” is used both in the rule that defines multiplication, and in the rule that defines
pointer types, and

– type names and variable names have the same lexical syntax, and
– blocks of code start with a possibly empty list of declarations and end with a possibly

empty list of statements, and
– both statements and declarations end with “;”.

The conjunction of all these causes explains us why there is an ambiguity. The removal
of just one of them fixes it. In fact, we know that for C the ambiguity was fixed by
introducing a disambiguator that reserves any declared type name from variable names
using a symbol table at parse time, effectively removing the second cause.

We now define a cause of an ambiguity in a sub-sentence to be the existence of any
edge that is in the parse tree of one alternative of an ambiguity node, but not in the
other. In other words, each difference between two alternative parse trees in a forest is
one cause of the ambiguity. For example, two parse tree edges differ if they represent
the application of a different production rule, span a different part of the ambiguous
sub-sentence, or are located at different heights in the tree.

We define an explanation of an ambiguity in a sentence to be the conjunction of all
causes of ambiguity in a sentence. An explanation is a set of differences. We call it an
explanation because an ambiguity exists if and only if all of its causes exist. A solution is
any change to the grammar, addition of a disambiguation filter or use of a disambiguator
that removes at least one of the causes.

Figure 3. Euler diagram showing the categorization of parse tree differences.

Some causes of ambiguity may be solvable by the disambiguation methods defined
in Section 2, some may not. Our goals are therefore to first explain the cause of am-
biguity as concisely as possible, and then if possible propose a palette of applicable
disambiguations. Note that even though the given common disambiguations have limited
scope, disambiguation in general is always possible by writing a disambiguation filter in
any computationally complete programming language.

3.1 Classes of Parse Tree Differences

Having defined ambiguity and the causes thereof, we can now categorize different kinds
of causes into classes of differences between parse trees. The difference classes are the
theory behind the workings of DR. AMBIGUITY (Section 5). Figure 3 summarizes the
cause classes that we will identify in the following.

For completeness we should explain that ambiguity of CFGs is normally bisected into
a class called HORIZONTAL ambiguity and a class called VERTICAL ambiguity [8,2,31].
VERTICAL contains all the ambiguity that causes parse forests that have two different
production rules directly under a choice node. For instance, all edges of derivation
sequences of form γAδ ⇒ γ((α) � (β))δ provided that α 6= β are in VERTICAL.
VERTICAL clearly identifies a difference class, namely the trees with different edges
directly under a choice node.

HORIZONTAL ambiguity is defined to be all the other ambiguity. HORIZONTAL
does not identify any difference class, since it just implies that the two top rules are
the same. Our previous example of ambiguity in a C grammar is an example of such
ambiguity. We conclude that in order to obtain full explanations of ambiguity the
HORIZONTAL/VERTICAL dichotomy is not detailed enough. VERTICAL provides only a
partial explanation (a single cause), while HORIZONTAL provides no explanations at all.

We now introduce a number of difference classes with the intention of characterizing
differences which can be solved by one of the aforementioned disambiguation methods.
Each element in a different class points to a single cause of ambiguity. A particular
disambiguation method may be applicable in the presence of elements in one or more of
these classes.

The EDGES class is the universe of all difference classes. In EDGES are all single
derivation steps (equivalent to edges in parse forests) that occur in one alternative
but not in the other. If no such derivation steps exist, the two alternatives are exactly
equal. Note that EDGES = HORIZONTAL ∪ VERTICAL.

The TERMINALS class contains all parse tree edges to non-ε leafs that occur in one
alternative but not in the other. If an explanation contains a difference in TERMINALS,
we know that the alternatives have used different terminal tokens—or in the case
of scannerless, different character classes—for the same sub-sentences. This is
sometimes called lexical ambiguity. If no differences are in TERMINALS, we know
that the terminals used in each alternative are equal.

The WHITESPACE class (⊂ TERMINALS) simply identifies the differences in TER-
MINALS that produce terminals consisting of nothing but spaces, tabs, newlines,
carriage returns or linefeeds.

The REGEXPS class contains all edges of derivation steps that replace a non-terminal
by a sentential form that generates a regular language, occurring in one derivation
but not in the other, i.e. A⇒ (ρ) where ρ is a regular expression over terminals. Of
course, TERMINALS ⊂ REGEXPS. In character level grammars (scannerless [9]),
the REGEXPS class often represents lexical ambiguity. Differences in REGEXPS
may point to solutions such as Reserve, Follow and Reject, since longest match
and keyword reservation are typical solution scenarios for ambiguity on the lexical
level.

In the SWAPS class we put all edges that have a corresponding edge in the other
alternative of which the source and target productions are equal but have swapped
order. For instance, the lower edges in the parse tree fragment ((E ∗E) +E) � (E ∗
(E + E)) are in SWAPS. If all differences are in SWAPS, the set of rules used in
the derivations of both alternatives are the same and each rule is applied the same
number of times—only their order of application is different.

The SAME class is the subset of edges in SWAPS that have the same source and target
productions. In this case, the only difference between two corresponding edges are
the substrings they span. For instance, the lower edges in the parse tree fragment
((E + E) + E) � (E + (E + E)) are in SAME. Differences in this class typically
require Associativity solutions.

The REORDERINGS class generalizes SWAPS with more than two rules to permute.
This may happen when rules are not directly recursive, but mutually recursive
in longer chains. Differences in REORDERINGS or SWAPS obviously suggest a
Priority solution, but especially for non-directly recursive derivations Priority will
not work. For example, the notorious “dangling else” issue [1] generates differences
in application order of mutually recursive statements and lists of statements. For
some grammars, a difference in REORDERINGS may also imply a difference in
VERTICAL, i.e. a choice between an if with an else and one without. In this case

a Preference solution would work. Some grammars (e.g. the IBM COBOL VS2
standard) only have differences in HORIZONTAL and REORDERINGS. In this case
a Follow solution may prevent the use of the if without the else if there is an
else to be parsed. Note that the Offside solution is an alternative method to remove
ambiguity caused by REORDERINGS. Apparently, we need even smaller classes of
differences before we can be more precise about suggesting a solution.

The LISTS class contains differences in the length of certain lists between two alter-
natives. For instance, we consider rules L → LE and observe differences in the
amount of times these rules are applied by the derivation steps in each alternative.
More precisely, for any L and E with the rule L → LE we find chains of edges
for derivation sequences αLβ ⇒ αLEβ ⇒⇒∗ αLE+β, and compute their length.
The edges of such chains of different lengths in the two alternatives are members of
LISTS. Examples of ambiguities caused by LISTS are those caused by not having
“longest match” behavior: an identifier “aa” generated using the rules I → a and
I → I a may be split up in two shorter identifiers “a” and “a” in another alternative.
We can say that LISTS ∩ REGEXPS 6= ∅.
Note that differences in LISTS ∩ REORDERINGS indicate a solution towards Follow
or Offside for they flag issues commonly seen in dangling constructs. On the other
hand a difference in LISTS \ REORDERINGS indicates that there must be another
important difference to explain the ambiguity. The “‘{S * a}”’ ambiguity in C is of
that sort, since the length of declaration and statement lists differ between the two
alternatives, while also differences in TERMINALS are necessary.

The EPSILONS class contains all edges to ε leaf nodes that only occur in one of the
alternatives. They correspond to derivation steps αAβ ⇒ α()β, using A → ε.
All cyclic derivations are caused by differences in EPSILONS because one of the
alternatives of a cyclic ambiguity must derive the empty sub-sentence, while the
other eventually loops back. However, differences in EPSILONS may also cause
other ambiguity than cyclic derivations.

The OPTIONALS class (⊂ EPSILONS) contains all edges of a derivation step αAβ ⇒
α()β that only exist in one alternative, while a corresponding edge of δAζ ⇒ δ(γ)ζ
only exists in the other alternative. Problems that are solved using longest match
(Follow) are commonly caused by optional whitespace for example.

4 Diagnosing Ambiguity

We provide an overview of the architecture and the algorithms of DR. AMBIGUITY in
this section. In Section 5 we demonstrate its output on example parse forests for an
ambiguous Java grammar.

4.1 Architecture

Figure 4 shows an overview of our diagnostics tool: DR. AMBIGUITY. We start from the
parse forest of an ambiguous sentence that is either encountered by a language engineer
or produced by a static ambiguity detection tool like AMBIDEXTER. Then, either the user

�����
��������

	AB��B

	AB��B
C���BA�DB

���BE��F�����
�����DB���

���A���C�A��D�
��CC����D��

����������

�DBE���B�
A���C�D��
�����DB���

 FA������A��D�
���DB�A��D�

!BA��AB

	AB��
�DB���

"���
�DB���

���A���C�A��D��
��������E

����EAFCDB��#�

�DBE���B�
�A�BED�EAF��B�
�A�����

��" �$
�AB���C
��A��B��

��%����!&��'

Figure 4. Contextual overview (input/output) of DR. AMBIGUITY.

points at a specific sub-sentence2, or DR. AMBIGUITY finds all ambiguous sub-sentences
(e.g. choice nodes) and iterates over them. For each choice node, the tool then generates
all unique combinations of two children of the choice node and applies a number of
specialized diff algorithms to them.

Conceptually there exists one diff algorithm per disambiguation method (Section 2).
However, since some methods may share intermediate analyses there is some additional
intermediate stages and some data-dependency that is not depicted in Figure 4. These

2 We use Eclipse IMP [14] as a platform for generating editors for programming languages
defined using RASCAL [23]. IMP provides contextual pop-up menus.

intermediate stages output information messages about the larger difference classes that
are to be analyzed further if possible. This output is called “Classification Information”
in Figure 4. The other output, called “Disambiguation Suggestions” is a list of specific
disambiguation solutions (with reference to specific production rules from the grammar).

If no specific or meaningful disambiguation method is proposed the classification
information will provide the user with useful information on designing an ad-hoc disam-
biguation.

DR. AMBIGUITY is written in the RASCAL domain specific programming lan-
guage [23]. This language is specifically targeted at analysis, transformation, generation
and visualization of source code. Parse trees are a built-in data-type which can be queried
using (higher order) pattern matching, visiting and set, list and map comprehension
facilities. To understand some of the RASCAL snippets in this section, please familiarize
yourself with this definition for parse trees (as introduced by [37]):

data Tree

= appl(Production prod, list[Tree] args) // production nodes

| amb(set[Tree] alternatives) // choice nodes

| char(int code); // terminal leaves

data Production

= prod(Symbol lhs, list[Symbol] rhs, Attributes attributes); // rules

DR. AMBIGUITY, in total, is 250 lines of RASCAL code that queries and traverses
terms of this parse tree format. The count includes source code comments. It is slow
on big parse forests3, which is why the aforementioned user-selection of specific sub-
sentences is important.

4.2 Algorithms

Here we show some of the actual source code of DR. AMBIGUITY.
First, the following two small functions iterate over all (deeply nested) choice nodes

(amb) and over all possible pairs of alternatives. This code uses deep match (/), set
matching, and set or list comprehensions. Note that the match operator (:=) iterates over
all possible matches of a value against a pattern, thus generating all different bindings
for the free variables in the pattern. This feature is used often in the implementation of
DR. AMBIGUITY.

list[Message] diagnose(Tree t) {

return [findCauses(x) | x <- {a | /a:amb(_) := t}];

}

list[Message] findCauses(Tree a) {

return [findCauses(x, y) | {x, y, _*} := a.alternatives];

}

The following functions each implement one of the diff algorithms from Figure 4.
The following two (slightly simplified4) functions detect opportunities to apply priority
or associativity disambiguations.

3 The current implementation of RASCAL lacks many trivial optimizations.
4 We have removed references to location information that facilitates IDE features.

list[Message] priorityCauses(Tree x, Tree y) {

if (/appl(p,[appl(q,_),_*]) := x,

/t:appl(q,[_*,appl(p,_)]) := y, p != q) {

return [error("You might add this priority rule: <p> \> <q>")

,error("You might add this associativity group: left (<p> | <q>)")];

}

return [];

}

list[Message] associativityCauses(Tree x, Tree y) {

if (/appl(p,[appl(p,_),_*]) := x, /Tree t:appl(p,[_*,appl(p,_)]) := y) {

return [error("You might add this associativity declaration: left <p>")];

}

return [];

}

Both functions “simultaneously” search through the two alternative parse trees p and q,
detecting a vertical swap of two different rules p and q (priority) or a horizontal swap of
the same rule p under itself (associativity).

This slightly more involved function detects dangling-else and proposes a follow
restriction as a solution:

list[Message] danglingCauses(Tree x, Tree y) {

if (appl(p,/appl(q,_)) := x, appl(q,/appl(p,_)) := y) {

return danglingOffsideSolutions(x, y)

+ danglingFollowSolutions(x, y);

}

return [];

}

list[Message] danglingFollowSolutions(Tree x, Tree y) {

if (prod(_, rhs, _) := x.prod,

prod(_, [prefix*, _, l:lit(_), more*], _) := y.prod,

rhs == prefix) {

return [error("You might add a follow restriction for <l> on: <x.prod>")];

}

return [];

}

The function danglingCauses detects re-orderings of arbitrary depth, after which the
outermost productions are compared by danglingFollowSolutions to see if one pro-
duction is a prefix of the other.

DR. AMBIGUITY currently contains 10 such functions, and we will probably add
more. Since they all employ the same style —(a) simultaneous deep match, (b) production
comparison and (c) construction of a feedback message— we have not included more
source code5.

5 The source code is available at http://svn.rascal-mpl.org/rascal/trunk/src/org/

rascalmpl/library/Ambiguity.rsc.

http://svn.rascal-mpl.org/rascal/trunk/src/org/rascalmpl/library/Ambiguity.rsc
http://svn.rascal-mpl.org/rascal/trunk/src/org/rascalmpl/library/Ambiguity.rsc

4.3 Discussion on Correctness

These diagnostics algorithms are typically wrong if one of the following four errors is
made:

– no suggestion is given, even though the ambiguity is of a quite common kind;
– the given suggestion does not resolve any ambiguity;
– the given suggestion removes both alternatives from the forest, resulting in an empty

forest (i.e., it removes the sentence from the language and is thus not language
preserving);

– the given suggestion removes the proper derivation, but also unintentionally removes
sentences from the language.

We address the first threat by demonstrating DR. AMBIGUITY on Java in Section 5.
However, we do believe that the number of detection algorithms is open in principle. For
instance, for any disambiguation method that characterizes a specific way of solving
ambiguity we may have a function to analyze the characteristic kind of difference. As an
“expert tool”, automating proposals for common solutions in language design, we feel
that an open-ended solution is warranted. More disambiguation suggestion algorithms
will be added as more language designs are made. Still, in the next section we will
demonstrate that the current set of algorithms is complete for all disambiguations applied
to a scannerless definition of Java 5 [11], which actually uses all disambiguations offered
by SDF2.

For the second and third threats, we claim that no currently proposed solution
removes both alternatives and all proposed solutions remove at least one. This is the case
because each suggestion is solely deduced from a difference between two alternatives,
and each disambiguation removes an artifact that is only present in one of the alternatives.
We are considering to actually prove this, but only after more usability studies.

The final threat is an important weakness of DR. AMBIGUITY, inherited from
the strength of the given disambiguation solutions. In principle and in practice, the
application of rejects, follow restrictions, or semantic actions in general renders the entire
parsing process stronger than context-free. For example, using context-free grammars
with additional disambiguations we may decide language membership of many non-
context-free languages. On the one hand, this property is beneficial, because we want to
parse programming languages that have no or awkward context-free grammars. On the
other hand, this property is cumbersome, since we can not easily predict or characterize
the effect of a disambiguation filter on the accepted set of sentences.

Only in the SWAPS class, and its sub-classes we may be (fairly) confident that we do
not remove unforeseen sentences from a language by introducing a disambiguation. The
reason is that if one of the alternatives is present in the forest, the other is guaranteed to
be also there. The running assumption is that the other derivation has not been filtered by
some other disambiguation. We might validate this assumption automatically in many
cases. So, application of priority and associativity rules suggested by DR. AMBIGUITY
are safe if no other disambiguations are applied.

Disambiguations Grammar snippet (Rascal notation)
7 levels of expression priority Expr = Expr "++"

> "++" Expr

1 father/child removal MethodSpec = Expr callee "." TypeArgs? Id {

if (callee is ExprName) filter; }

9 associativity groups Expr = left (Expr "+" Expr

| Expr "-" Expr)

10 rejects ID = ([$A-Z_a-z] [$0-9A-Z_a-z]*) \ Keywords

30 follow restrictions "+" = [\+] !>> [\+]

4 vertical preferences Stm = @prefer "if" "(" Expr ")" Stm

| "if" "(" Expr ")" Stm "else" Stm

Table 1. Disambiguations applied in the Java 5 grammar [11]

5 Demonstration

In this section we evaluate the effectiveness of DR. AMBIGUITY as a tool. We applied
DR. AMBIGUITY to a scannerless (character level) grammar for Java [11,10]. This well
tested grammar was written in SDF2 by Bravenboer et al. and makes ample use of its
disambiguation facilities. For the experiment here we automatically transformed the
SDF2 grammar to RASCAL’s EBNF-like form.

Table 1 summarizes which disambiguations were applied in this grammar. RASCAL
supports all disambiguation features of SDF2, but some disambiguation filters are
implemented as libraries rather than built-in features. The @prefer attribute is interpreted
by a library function for example. Also, in SDF2 one can (mis)use a non-transitive priority
to remove a direct father/child relation from the grammar. In Rascal we use a semantic
action for this.

5.1 Evaluation Method

DR. AMBIGUITY is effective if it can explain the existence of a significant amount of
choice nodes in parse forests and proposes the right fixes. We measure this effectiveness
in terms of precision and recall. DR. AMBIGUITY has high precision if it does not
propose too many solutions that are useless or meaningless to the language engineer. It
has high recall if it finds all the solutions that the language engineer deems necessary.
Our evaluation method is as follows:

– The set of disambiguations that Bravenboer applied to his Java grammar is our
“golden standard”.

– The disambiguations in the grammar are selectively removed, which results in
different ambiguous versions of the grammar. New parsers are generated for each
version.

– An example Java program is parsed with each newly generated parser. The program
is unambiguous for the original grammar, but becomes ambiguous for each altered
version of the grammar.

Diagnoses
Experiment P A R F c v O Precision Recall
1. Remove priority between "*" and "+" 1 1 0 0 0 1 0 33% 100%
2. Remove associativity for "+" 0 1 0 0 0 0 0 100% 100%
3. Remove reservation of true keyword from ID 0 0 1 0 0 1 0 50% 100%
4. Remove longest match for identifiers 0 0 0 6 0 0 0 16% 100%
5. Remove package name vs. field access priority 0 0 0 0 6 1 0 14% 100%
6. Remove vertical preference for dangling else 0 0 0 1 14 1 1 7% 100%
7. All the above changes at the same time 1 2 1 7 20 4 1 17% 100%
Table 2. Precision/Recall results for each experiment, including (P)riority,
(A)ssociativity, (R)eject, (F)ollow restrictions, A(c)tions filtering edges, A(v)oid/prefer
suggestions, and (O)ffside rule. For each experiment, the figures of the removed disam-
biguation are highlighted.

– We measure the total amount and which kinds of suggestions are made by DR. AM-
BIGUITY for the parse forests of each grammar version, and compute the precision
and recall.

Precision is computed by |FOUNDDISAMBIGUATIONS ∩ REMOVEDDISAMBIGUATIONS|
|FOUNDDISAMBIGUATIONS| × 100%.

We expect low precision, around 50%, because each particular ambiguity often has many
different solution types. Low precision is not necessarily a bad thing, provided the total
amount of disambiguation suggestions remains human-checkable.

Recall is computed by |FOUNDDISAMBIGUATIONS ∩ REMOVEDDISAMBIGUATIONS|
|REMOVEDDISAMBIGUATIONS| ×100%. From

this number we see how much we have missed. We expect the recall to be 100% in our
experiments, since we designed our detection methods specifically for the disambiguation
techniques of SDF2.

5.2 Results

Table 2 contains the results of measuring the precision and recall on a number of
experiments. Each experiment corresponds to a removal of one or more disambiguation
constructs and the parsing of a single Java program file that triggers the introduced
ambiguity.

Table 2 shows that we indeed always find the removed disambiguation among the
suggestions. Also, we always find more than one suggestion (the second experiment is
the only exception).

The dangling-else ambiguity of experiment 6 introduces many small differences
between two alternatives, which is why many (arbitrary) semantic actions are proposed
to solve these. We may learn from this that semantic actions need to be presented to
the language engineer as a last resort. For these disambiguations the risk of collateral
damage (a non-language preserving disambiguation) is also quite high.

The final experiment tests whether the simultaneous analysis of different choice
nodes that are present in a parse forest may lead to a loss of precision or recall. The
results show that we find exactly the same suggestions. Also, as expected the precision
of such an experiment is very low. Note however, that DR. AMBIGUITY reports each

Figure 5. DR. AMBIGUITY reports diagnostics in the RASCAL language workbench.

disambiguation suggestion per choice node, and thus the precision is usually perceived
per choice node and never as an aggregated value over an entire source file. Figure 5
depicts how DR. AMBIGUITY may report its output.

5.3 Discussion

We have demonstrated the effectiveness of DR. AMBIGUITY for only one grammar.
Moreover this grammar already contained disambiguations that we have removed, si-
multaneously creating a representative case and a golden standard.

We may question whether DR. AMBIGUITY would do well on grammars that have
not been written with any disambiguation construct in mind. We may also question
whether DR. AMBIGUITY works well on completely different grammars, such as for
COBOL or PL/I. More experimental evaluation is warranted. Nevertheless, this initial
evaluation based on Java looks promising and does not invalidate our approach.

Regarding the relatively low precision, we claimed that this is indeed wanted in many
cases. The actual resolution of an ambiguity is a language design question. DR. AMBI-
GUITY should not a priori promote a particular disambiguation over another well known
disambiguation. For example, reverse engineers have a general dislike of the offside rule
because it complicates the construction of a parser, while the users of a domain specific
language may applaud the sparing use of bracket literals.

6 Conclusions

We have presented theory and practice of automatically diagnosing the causes of am-
biguity in context-free grammars for programming languages and of proposing disam-
biguation solutions. We have evaluated our prototype implementation on an actively
used and mature grammar for Java 5, to show that DR. AMBIGUITY can indeed propose
the proper disambiguations.

Future work on this subject includes further extension, further usability study and
finally proofs of correctness. To support development of front-ends for many program-
ming languages and domain specific languages, we will include DR. AMBIGUITY in
releases of the RASCAL IDE (a software language workbench).

References

1. Aho, A., Sethi, R., Ullman, J.: Compilers. Principles, Techniques and Tools. Addison-Wesley
(1986)

2. Altman, T., Logothetis, G.: A note on ambiguity in context-free grammars. Inf. Process. Lett.
35(3), 111–114 (1990)

3. Aycock, J., Horspool, R.: Faster generalized LR parsing. In: Jähnichen, S. (ed.) CC 1999.
LNCS, vol. 1575, pp. 32–46. Springer-Verlag (1999)

4. Basten, H.J.S.: Tracking down the origins of ambiguity in context-free grammars. In: Pro-
ceedings of the 7th International Colloquium on Theoretical Aspects of Computing (ICTAC
2010). LNCS, vol. 6255, pp. 76–90. Springer (2010)

5. Basten, H.J.S., Vinju, J.J.: Faster ambiguity detection by grammar filtering. In: Brabrand, C.,
Moreau, P.E. (eds.) Proceedings of the Tenth Workshop on Language Descriptions, Tools and
Applications (LDTA 2010). pp. 5:1–5:9. ACM (2010)

6. Begel, A., Graham, S.L.: XGLR–an algorithm for ambiguity in programming languages.
Science of Computer Programming 61(3), 211 – 227 (2006), Special Issue on The Fourth
Workshop on Language Descriptions, Tools, and Applications (LDTA 2004)

7. Bouwers, E., Bravenboer, M., Visser, E.: Grammar engineering support for precedence rule
recovery and compatibility checking. ENTCS 203(2), 85 – 101 (2008), proceedings of the
Seventh Workshop on Language Descriptions, Tools, and Applications (LDTA 2007)

8. Brabrand, C., Giegerich, R., Møller, A.: Analyzing ambiguity of context-free grammars. Sci.
Comput. Program. 75(3), 176–191 (2010)

9. van den Brand, M., Scheerder, J., Vinju, J.J., Visser, E.: Disambiguation filters for scannerless
generalized LR parsers. In: Horspool, R.N. (ed.) Compiler Construction, 11th International
Conference, CC 2002. LNCS, vol. 2304, pp. 143–158. Springer (2002)

10. Bravenboer, M., Tanter, E., Visser, E.: Declarative, formal, and extensible syntax definition
for AspectJ. SIGPLAN Not. 41, 209–228 (October 2006)

11. Bravenboer, M., Vermaas, R., de Groot, R., Dolstra, E.: Java-front: Java syntax definition,
parser, and pretty-printer. Tech. rep., http://www.program-transformation.org (2011),
http://www.program-transformation.org/Stratego/JavaFront

12. Bravenboer, M., Vermaas, R., Vinju, J.J., Visser, E.: Generalized type-based disambiguation
of meta programs with concrete object syntax. In: Glück, R., Lowry, M.R. (eds.) Generative
Programming and Component Engineering, 4th International Conference, GPCE 2005. LNCS,
vol. 3676, pp. 157–172. Springer, Tallinn, Estonia (2005)

13. Cantor, D.G.: On the ambiguity problem of Backus systems. Journal of the ACM 9(4),
477–479 (1962)

http://www.program-transformation.org
http://www.program-transformation.org/Stratego/JavaFront

14. Charles, P., Fuhrer, R.M., Jr., S.M.S., Duesterwald, E., Vinju, J.: Accelerating the creation of
customized, language-specific IDEs in eclipse. In: Arora, S., Leavens, G.T. (eds.) Proceedings
of the 24th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2009 (2009)

15. Chomsky, N., Schützenberger, M.: The algebraic theory of context-free languages. In: Braf-
fort, P. (ed.) Computer Programming and Formal Systems, pp. 118–161. North-Holland,
Amsterdam (1963)

16. Earley, J.: An efficient context-free parsing algorithm. Commun. ACM 13, 94–102 (February
1970)

17. Economopoulos, G.R.: Generalised LR parsing algorithms. Ph.D. thesis, Royal Holloway,
University of London (August 2006)

18. Floyd, R.W.: On ambiguity in phrase structure languages. Communications of the ACM 5(10),
526–534 (1962)

19. Ford, B.: Parsing expression grammars: a recognition-based syntactic foundation. SIGPLAN
Not. 39, 111–122 (January 2004)

20. Ginsburg, S., Harrison, M.A.: Bracketed context-free languages. Journal of Computer and
System Sciences 1(1), 1–23 (1967)

21. Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J.: The syntax definition formalism SDF -
reference manual. SIGPLAN Notices 24(11), 43–75 (1989)

22. Johnstone, A., Scott, E.: Modelling GLL parser implementations. In: Malloy, B., Staab, S.,
van den Brand, M. (eds.) Software Language Engineering, LNCS, vol. 6563, pp. 42–61.
Springer Berlin / Heidelberg (2011)

23. Klint, P., van der Storm, T., Vinju, J.: EASY meta-programming with Rascal. In: Fernandes,
J.a., Lämmel, R., Visser, J., Saraiva, J.a. (eds.) Generative and Transformational Techniques in
Software Engineering III, LNCS, vol. 6491, pp. 222–289. Springer Berlin / Heidelberg (2011)

24. Klint, P., Visser, E.: Using filters for the disambiguation of context-free grammars. In:
Pighizzini, G., San Pietro, P. (eds.) Proc. ASMICS Workshop on Parsing Theory. pp. 1–
20. Tech. Rep. 126–1994, Dipartimento di Scienze dell’Informazione, Università di Milano,
Milano, Italy (1994)

25. Lämmel, R., Verhoef, C.: Semi-automatic grammar recovery. Softw. Pract. Exper. 31, 1395–
1448 (December 2001)

26. Landin, P.J.: The next 700 programming languages. Commun. ACM 9, 157–166 (March
1966)

27. Moonen, L.: Generating robust parsers using island grammars. In: Proceedings of the Eighth
Working Conference on Reverse Engineering (WCRE 2001). pp. 13–. WCRE 2001, IEEE
Computer Society, Washington, DC, USA (2001)

28. Parr, T., Fisher, K.: LL(*): the foundation of the ANTLR parser generator. In: Proceedings of
the 32nd ACM SIGPLAN conference on Programming Language Design and Implementation.
pp. 425–436. PLDI 2011, ACM, New York, NY, USA (2011)

29. Rekers, J.: Parser Generation for Interactive Environments. Ph.D. thesis, University of Ams-
terdam (1992)

30. Salomon, D.J., Cormack, G.V.: Scannerless NSLR(1) parsing of programming languages. In:
Proceedings of the ACM SIGPLAN 1989 Conference on Programming language design and
implementation. pp. 170–178. PLDI 1989, ACM (1989)

31. Schröer, F.W.: AMBER, an ambiguity checker for context-free grammars. Tech. rep., compil-
ertools.net (2001), see http://accent.compilertools.net/Amber.html

32. Schröer, F.W.: ACCENT, a compiler compiler for the entire class of context-free grammars,
second edition. Tech. rep., compilertools.net (2006), see http://accent.compilertools.

net/Accent.html

33. Scott, E.: SPPF-style parsing from earley recognisers. ENTCS 203, 53–67 (April 2008)

http://accent.compilertools.net/Amber.html
http://accent.compilertools.net/Accent.html
http://accent.compilertools.net/Accent.html

34. Scott, E., Johnstone, A.: GLL parsing. ENTCS 253(7), 177 – 189 (2010), proceedings of the
Ninth Workshop on Language Descriptions Tools and Applications (LDTA 2009)

35. Tomita, M.: Efficient Parsing for Natural Languages. A Fast Algorithm for Practical Systems.
Kluwer Academic Publishers (1985)

36. Vinju, J.J.: SDF disambiguation medkit for programming languages. Tech. Rep. SEN-1107,
Centrum Wiskunde & Informatica (2011), http://oai.cwi.nl/oai/asset/18080/18080D.
pdf

37. Visser, E.: Syntax Definition for Language Prototyping. Ph.D. thesis, Universiteit van Amster-
dam (1997)

http://oai.cwi.nl/oai/asset/18080/18080D.pdf
http://oai.cwi.nl/oai/asset/18080/18080D.pdf

	Parse Forest Diagnostics with Dr. Ambiguity

